Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Spatially distinct pools of TORC1 balance protein homeostasis.

Identifieur interne : 000230 ( Main/Exploration ); précédent : 000229; suivant : 000231

Spatially distinct pools of TORC1 balance protein homeostasis.

Auteurs : Vikramjit Lahiri [États-Unis] ; Daniel J. Klionsky [États-Unis]

Source :

RBID : pubmed:30696339

Descripteurs français

English descriptors

Abstract

In eukaryotes, TORC1/MTORC1 is a critical regulator of growth and proliferation. In response to nutrient abundance TORC1/MTORC1 favors anabolic processes and retards degradative ones. In S. cerevisiae, TORC1 is conventionally known to localize on the vacuolar membrane. In the course of their recent investigations, Hatakeyama et al. discovered a novel second site of TORC1 localization- the prevacuolar endosome. Their article, highlighted here, discusses the mechanism of TORC1 localization to the prevacuolar endosome and highlights a hitherto unappreciated mechanism by which 2 spatially separated pools of TORC1 execute the distinct functions of promoting anabolism and inhibiting degradation.

DOI: 10.1080/15548627.2019.1575162
PubMed: 30696339
PubMed Central: PMC6526836


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Spatially distinct pools of TORC1 balance protein homeostasis.</title>
<author>
<name sortKey="Lahiri, Vikramjit" sort="Lahiri, Vikramjit" uniqKey="Lahiri V" first="Vikramjit" last="Lahiri">Vikramjit Lahiri</name>
<affiliation wicri:level="2">
<nlm:affiliation>a Life Sciences Institute, and Department of Molecular, Cellular and Developmental Biology , University of Michigan , Ann Arbor , MI , USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>a Life Sciences Institute, and Department of Molecular, Cellular and Developmental Biology , University of Michigan , Ann Arbor , MI </wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Klionsky, Daniel J" sort="Klionsky, Daniel J" uniqKey="Klionsky D" first="Daniel J" last="Klionsky">Daniel J. Klionsky</name>
<affiliation wicri:level="2">
<nlm:affiliation>a Life Sciences Institute, and Department of Molecular, Cellular and Developmental Biology , University of Michigan , Ann Arbor , MI , USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>a Life Sciences Institute, and Department of Molecular, Cellular and Developmental Biology , University of Michigan , Ann Arbor , MI </wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:30696339</idno>
<idno type="pmid">30696339</idno>
<idno type="doi">10.1080/15548627.2019.1575162</idno>
<idno type="pmc">PMC6526836</idno>
<idno type="wicri:Area/Main/Corpus">000358</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000358</idno>
<idno type="wicri:Area/Main/Curation">000358</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000358</idno>
<idno type="wicri:Area/Main/Exploration">000358</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Spatially distinct pools of TORC1 balance protein homeostasis.</title>
<author>
<name sortKey="Lahiri, Vikramjit" sort="Lahiri, Vikramjit" uniqKey="Lahiri V" first="Vikramjit" last="Lahiri">Vikramjit Lahiri</name>
<affiliation wicri:level="2">
<nlm:affiliation>a Life Sciences Institute, and Department of Molecular, Cellular and Developmental Biology , University of Michigan , Ann Arbor , MI , USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>a Life Sciences Institute, and Department of Molecular, Cellular and Developmental Biology , University of Michigan , Ann Arbor , MI </wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Klionsky, Daniel J" sort="Klionsky, Daniel J" uniqKey="Klionsky D" first="Daniel J" last="Klionsky">Daniel J. Klionsky</name>
<affiliation wicri:level="2">
<nlm:affiliation>a Life Sciences Institute, and Department of Molecular, Cellular and Developmental Biology , University of Michigan , Ann Arbor , MI , USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>a Life Sciences Institute, and Department of Molecular, Cellular and Developmental Biology , University of Michigan , Ann Arbor , MI </wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Autophagy</title>
<idno type="eISSN">1554-8635</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Autophagy (MeSH)</term>
<term>Mechanistic Target of Rapamycin Complex 1 (MeSH)</term>
<term>Proteostasis (MeSH)</term>
<term>Saccharomyces cerevisiae (MeSH)</term>
<term>Saccharomyces cerevisiae Proteins (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Autophagie (MeSH)</term>
<term>Complexe-1 cible mécanistique de la rapamycine (MeSH)</term>
<term>Homéostasie protéique (MeSH)</term>
<term>Protéines de Saccharomyces cerevisiae (MeSH)</term>
<term>Saccharomyces cerevisiae (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Mechanistic Target of Rapamycin Complex 1</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Autophagy</term>
<term>Proteostasis</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Autophagie</term>
<term>Complexe-1 cible mécanistique de la rapamycine</term>
<term>Homéostasie protéique</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In eukaryotes, TORC1/MTORC1 is a critical regulator of growth and proliferation. In response to nutrient abundance TORC1/MTORC1 favors anabolic processes and retards degradative ones. In S. cerevisiae, TORC1 is conventionally known to localize on the vacuolar membrane. In the course of their recent investigations, Hatakeyama et al. discovered a novel second site of TORC1 localization- the prevacuolar endosome. Their article, highlighted here, discusses the mechanism of TORC1 localization to the prevacuolar endosome and highlights a hitherto unappreciated mechanism by which 2 spatially separated pools of TORC1 execute the distinct functions of promoting anabolism and inhibiting degradation.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Automated" Owner="NLM">
<PMID Version="1">30696339</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>05</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>05</Month>
<Day>18</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1554-8635</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>15</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2019</Year>
<Month>04</Month>
</PubDate>
</JournalIssue>
<Title>Autophagy</Title>
<ISOAbbreviation>Autophagy</ISOAbbreviation>
</Journal>
<ArticleTitle>Spatially distinct pools of TORC1 balance protein homeostasis.</ArticleTitle>
<Pagination>
<MedlinePgn>561-564</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1080/15548627.2019.1575162</ELocationID>
<Abstract>
<AbstractText>In eukaryotes, TORC1/MTORC1 is a critical regulator of growth and proliferation. In response to nutrient abundance TORC1/MTORC1 favors anabolic processes and retards degradative ones. In S. cerevisiae, TORC1 is conventionally known to localize on the vacuolar membrane. In the course of their recent investigations, Hatakeyama et al. discovered a novel second site of TORC1 localization- the prevacuolar endosome. Their article, highlighted here, discusses the mechanism of TORC1 localization to the prevacuolar endosome and highlights a hitherto unappreciated mechanism by which 2 spatially separated pools of TORC1 execute the distinct functions of promoting anabolism and inhibiting degradation.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Lahiri</LastName>
<ForeName>Vikramjit</ForeName>
<Initials>V</Initials>
<AffiliationInfo>
<Affiliation>a Life Sciences Institute, and Department of Molecular, Cellular and Developmental Biology , University of Michigan , Ann Arbor , MI , USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Klionsky</LastName>
<ForeName>Daniel J</ForeName>
<Initials>DJ</Initials>
<Identifier Source="ORCID">0000-0002-7828-8118</Identifier>
<AffiliationInfo>
<Affiliation>a Life Sciences Institute, and Department of Molecular, Cellular and Developmental Biology , University of Michigan , Ann Arbor , MI , USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016421">Editorial</PublicationType>
<PublicationType UI="D016420">Comment</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>02</Month>
<Day>06</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Autophagy</MedlineTA>
<NlmUniqueID>101265188</NlmUniqueID>
<ISSNLinking>1554-8627</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D000076222">Mechanistic Target of Rapamycin Complex 1</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="CommentOn">
<RefSource>Mol Cell. 2019 Jan 17;73(2):325-338.e8</RefSource>
<PMID Version="1">30527664</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001343" MajorTopicYN="Y">Autophagy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000076222" MajorTopicYN="N">Mechanistic Target of Rapamycin Complex 1</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000074702" MajorTopicYN="N">Proteostasis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="Y">Saccharomyces cerevisiae Proteins</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Autophagy</Keyword>
<Keyword MajorTopicYN="Y">MTOR</Keyword>
<Keyword MajorTopicYN="Y">lysosome</Keyword>
<Keyword MajorTopicYN="Y">stress</Keyword>
<Keyword MajorTopicYN="Y">vacuole</Keyword>
<Keyword MajorTopicYN="Y">yeast</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>1</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>5</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>1</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30696339</ArticleId>
<ArticleId IdType="doi">10.1080/15548627.2019.1575162</ArticleId>
<ArticleId IdType="pmc">PMC6526836</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Biol Cell. 2014 Apr;25(7):1171-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24478451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2017 Oct 19;171(3):642-654.e12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29053970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2011 Jul 19;21(1):77-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21763610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2014 Feb 13;156(4):786-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24529380</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2005 Jul 10;1744(3):438-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15913810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2009 Sep 11;35(5):563-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19748353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2016 Jun;41(6):532-545</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27161823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Jun 13;320(5882):1496-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18497260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2013 Nov 25;203(4):563-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24385483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1997 Oct 3;91(1):109-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9335339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2015 Jan 9;347(6218):194-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25567907</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2003 Mar 1;116(Pt 5):763-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12571274</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2019 Jan 17;73(2):325-338.e8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30527664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2017 Feb 15;36(4):397-408</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28096180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2010 Feb;30(4):1049-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19995911</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2016 Jan;26(1):7-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26658722</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2017 Mar 9;168(6):960-976</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28283069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2008 Oct;7(10):1819-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18723607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2014 Feb 13;156(4):771-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24529379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2014 Nov 20;9(4):1281-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25457612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2016 Mar 24;165(1):153-164</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26972053</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cell Biol. 2014 Jul;24(7):400-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24698685</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Michigan</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Michigan">
<name sortKey="Lahiri, Vikramjit" sort="Lahiri, Vikramjit" uniqKey="Lahiri V" first="Vikramjit" last="Lahiri">Vikramjit Lahiri</name>
</region>
<name sortKey="Klionsky, Daniel J" sort="Klionsky, Daniel J" uniqKey="Klionsky D" first="Daniel J" last="Klionsky">Daniel J. Klionsky</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000230 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000230 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30696339
   |texte=   Spatially distinct pools of TORC1 balance protein homeostasis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30696339" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020